Total Synthesis of Bryostatin 2

David A. Evans,* Percy H. Carter,¹ Erick M. Carreira,^{2a} André B. Charette,^{2b} Joëlle A. Prunet,^{2c} and Mark Lautens^{2d}

Contribution from the Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138

Received March 17, 1999

Abstract: The total synthesis of the marine macrolide bryostatin 2 is described. The synthesis plan relies on aldol and directed reduction steps in order to construct the *anti*-1,3-diol array present in each of the principal subunits (A, B, and C). These fragments were coupled using a Julia olefination and subsequent sulfone alkylation. A series of functionalization reactions provided a bryopyran seco acid, which was macrolactonized under Yamaguchi conditions. Installation of the two enoate moieties took advantage of asymmetric phosphonate and aldol condensation strategies. Reduction of the C₂₀ ketone and simple protecting group operations then completed the synthesis of bryostatin 2. This flexible approach should provide access to a series of new analogues of this clinically important marine natural product.

Introduction

Bryostatin 1 (1a) has captured the attention of the chemical, biological, and medical communities since Pettit first reported its structure determination in 1982.³ Following the discovery of bryostatin 1, 17 other bryostatins have been isolated and fully characterized (Figure 1). While some congeners (1b-d) differ from bryostatin 1 (1a) only in the acyl residues appended to the C₇ and C₂₀ hydroxyls, others (e.g., 1e and 2) embody significant changes in the C₁₉-C₂₇ region of the bryostatin nucleus. Our interest in the synthesis of bryostatin was motivated by three circumstances: (i) the strict polyacetate origin of the bryostatin macrolides offered an ideal forum for the extension of our aldol-based approach to polypropionate natural products;⁴ (ii) the clinically relevant bryostatin 1 remains a scarce and expensive commodity;⁵ and (iii) simpler analogues might prove to be viable medicinal agents and useful biological probes. In

(3) Review: Pettit, G. R. The Bryostatins. In *Progress in the Chemistry* of Organic Natural Products; Herz, W., Ed.; Springer-Verlag: New York, 1991; No. 57, pp 153–195.

(4) (a) Evans, D. A. Aldrichim. Acta **1982**, 15, 23–32. (b) Evans, D. A.; Kim, A. S. (S)-4-Benzyl-2-oxazolidinone. In *Encyclopedia of Reagents for Organic Synthesis*; Paquette, L. A., Editor-in-Chief; John Wiley and Sons: New York, 1995; Vol. 1, pp 345–356. (c) Kim, A. S. Ph.D. Thesis, Harvard University, 1997.

(5) (a) Extractive isolation proceeds in ca. 1.3×10^{-6} % yield (18 g of bryostatin from 14 000 kg of animal) on industrial scale. Schaufelberger, D. E.; Koleck, M. P.; Beutler, J. A.; Vatakis, A. M.; Alvarado, A. B.; Andrews, P.; Marzo, L. V.; Muschik, G. M.; Roach, J.; Ross, J. T.; Lebherz, W. B.; Reeves, M. P.; Eberwein, R. M.; Rodgers, L. I.; Testerman, R. P.; Snader, K. M.; Forenza, S. *J. Nat. Prod.* **1991**, *54*, 1265–1270. (b) The current market price for bryostatin 1 is \$1156 (U.S.)/500 μ g: LC Laboratories, Woburn, MA. (c) Marine aquaculture methods are currently being implemented in an attempt to solve the supply problem; cf. *New Scientist* **1996**, 14 Sept, 38–42.

Figure 1. Representative members of the bryostatin macrolides.

this study, we describe the details⁶ of our synthesis of bryostatin 2 (1b), a natural congener⁷ and synthetic precursor⁸ of 1a.

Structure. Bryostatin 1 was first isolated in 1968 from the bryozoan *Bugula neritina* (Linnaeus), an innocuous filter feeder with a propensity for attaching to ship hulls and boat docks.⁹ The structure of bryostatin 1 was determined through single-crystal X-ray diffraction analysis (Figure 2) and confirmed using a combination of ¹H NMR, ¹³C NMR, IR, and high-resolution

⁽¹⁾ This work is taken in part from the Ph.D. Thesis of P. H. Carter, Harvard University, 1998.

^{(2) (}a) Present address: Eidgenössischen Technische Hochschule, Laboratorium Für Organische Chemie, ETH-Zentrum, Universitatstrasse 16, CH-8092 Zürich 91125, Switzerland. (b) Present address: Départment de Chimie, Université de Montréal, Montréal, Québec, Canada H3C 3J7. (c) Present address: Ecole Polytechnique, Département De Chimie, Laboratorie De Synthese Organique, 91128 Palaiseau Cedex, France. (d) Present address: Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6.

⁽⁶⁾ This work has been communicated in preliminary form: Evans, D. A.; Carter, P. H.; Carreira, E. M.; Prunet, J. A.; Charette, A. B.; Lautens, M. Angew. Chem., Int. Ed. **1998**, *37*, 2354–2359.

⁽⁷⁾ Pettit, G. R.; Herald, C. L.; Kamano, Y.; Gust, D.; Aoyagi, R. J. Nat. Prod. 1983, 46, 528–531.

⁽⁸⁾ Pettit has previously described the conversion of bryostatin 2 (1b) into bryostatin 1 (1a), cf.: Pettit, G. R.; Sengupta, D.; Herald, C. L.; Sharkey, N. A.; Blumberg, P. M. *Can. J. Chem.* **1991**, *69*, 856–860.

^{(9) (}a) Pettit, G. R.; Day, J. F.; Hartwell, J. L.; Wood, H. B. *Nature* **1970**, 227, 962–963. (b) Pettit, G. R.; Herald, C. L.; Doubek, D. L.; Herald, D. L.; Arnold, E.; Clardy, J. J. Am. Chem. Soc. **1982**, 104, 6846–6848.

Figure 2. X-ray crystal structure of bryostatin1.9b

mass spectrometry.^{9b,10} The absolute configuration of bryostatin 1 was tentatively assigned on the basis of the small anomalous dispersion effects of oxygen and carbon in the crystal structure^{9b,11} and later confirmed via analysis of the heavy-atom dispersion effects in the X-ray structure of a *p*-bromobenzoate derivative.¹²

As can be seen in Figure 2, bryostatin 1 displays several distinctive architectural features. The macrolide houses three pyran rings (two of which are hemiketals), a 20-membered lactone, two exocyclic α,β -unsaturated esters (C₁₃, C₂₁), one trans olefin (C₁₆-C₁₇), and an unusual octadienyl ester side chain (C₂₀). The three-dimensional structure is organized about the C₃ hydroxyl group, which serves as a hydrogen bond acceptor for the C₁₉ lactol (O₃-H-O₁₉ distance of 2.71 Å) and a bifurcated hydrogen bond donor for the O₅ and O₁₁ ether oxygens (O₃-H-O distances of 3.00 and 2.84 Å, respectively).9b The solution structure of the C_{20} -desoxymacrolide bryostatin 10 (1e) has been determined recently using 2D-NMR ROESY technique and shows close homology with the solid-state structure depicted in Figure 2.13 This well-defined tertiary structure has important ramifications for the solution reactivity of the bryostatins (vide infra).

Biological Activity. The bryostatins are a family of potent antitumor agents,¹⁴ and bryostatin 1 exhibits significant in vivo antineoplastic activity against murine leukemia, B-cell lymphoma, reticulum cell sarcoma, ovarian carcinoma, and melanoma.^{3,14,15} The bryostatins also display a diverse range of other biological effects in vitro and in vivo, including stimulation of T-cells and the immune system,¹⁶ stimulation of the hematopoietic system,¹⁷ activation of protein kinase C (PKC) through

(10) For a revision of the ¹H and ¹³C NMR assignments of bryostatin 1, cf.: Schaufelberger, D. E.; Chmurny, G. N.; Koleck, M. P. *Magn. Reson. Chem.* **1991**, *29*, 366–374.

(11) Engel, D. W. Acta Crystallogr., Sect. B 1972, B28, 1498–1509.
(12) Pettit, G. R.; Herald, D. L.; Gao, F.; Sengupta, D.; Herald, C. L. J. Org. Chem. 1991, 56, 1337–1340.

(13) Kamano, Y.; Zhang, H.; Morita, H.; Itokawa, H.; Shirota, O.; Pettit, G. R.; Herald, D. L.; Herald, C. L. *Tetrahedron* **1996**, *52*, 2369–2376.

(14) Reviews: (a) Kraft, A. S. J. Natl. Cancer Inst. **1993**, 85, 1790–1792. (b) Pettit, G. R. J. Nat. Prod. **1996**, 59, 812–821. (c) Stone, R. M. Leukemia Res. **1997**, 21, 399–401. (d) Information on the status of bryostatin clinical trials may be accessed via the Internet at http://cancernet.nci.nih.gov/prot/protsrch.shtml.

(15) Schuchter, L. M.; Esa, A. H.; May, W.; Laulis, M. K.; Pettit, G. R.; Hess, A. D. *Cancer Res.* **1991**, *51*, 682–687.

(16) (a) Trenn, G.; Pettit, G. R.; Takayama, H.; Hu-Li, J.; Sitkovsky,
M. V. J. Immunol. **1988**, 140, 433-439. (b) Hess, A. D.; Silanksis, M. K.;
Esa, A. H.; Pettit, G. R.; May, W. S. J. Immunol. **1988**, 141, 3263-3269.
(c) Tuttle, T. M.; Inge, T. H.; Bethke, K. P.; McCrady, C. W.; Pettit, G. R.;
Bear, H. D. Cancer Res. **1992**, 52, 548-553. (d) Mohr, H.; Pettit, G. R.;
Plessing-Menze, A. Immunobiology **1987**, 175, 420. (e) Drexler, H. G.;
Gignac, S. M.; Pettit, G. R.; Hoffbrand, A. V. Eur. J. Immunol. **1990**, 20, 119-127.

ultrapotent (picomolar) binding to the phorbol ester binding site,¹⁸ and disruption of phorbol ester-induced tumor promotion.¹⁹ These effects are noteworthy for two reasons: (i) antineoplastic agents typically *antagonize* the immune and hematopoietogenic systems,¹⁷ but bryostatin *potentiates* them; and (ii) exogenous agonists of PKC, such as the phorbol esters, are usually tumor promoters, but bryostatin acts as an antitumor agent.²⁰

The combined antitumor, immunopotentiating, and hematopotentiating properties of bryostatin 1 made it a promising candidate for clinical trials, and the results from the Phase I study (which began in early 1991) have demonstrated that bryostatin 1 may be administered safely (muscle soreness was the dose-limiting toxicity) and can induce a tumor response with a wide range of tumors.²¹ More recent tests have shown that bryostatin may synergize with both tamoxifen (in vitro) and paclitaxel (in vivo),²² and future clinical trials will probably assess the use of these combination therapies. The U.S. National Cancer Institute has moved bryostatin into Phase II trials against non-Hodgkin's lymphoma, melanoma, and renal cancer.¹⁴

Synthesis Plan. The unusual structure, potent biological activity, and relative scarcity of the bryostatins make them attractive targets for total synthesis.²³ Accordingly, several groups,^{23,24} including our own,²⁵ have initiated programs directed toward the total synthesis of the bryostatins. Most notable among these efforts is the total synthesis of bryostatin 7 reported by the Masamune group.²⁶

Our plan for the synthesis of bryostatin 1 is outlined in Scheme 1. Initial scission (transform **T1**) of the $O_{25}-C_1$ lactone bond (macrocyclization transform²⁷), followed by further disconnection at the C_9-C_{10} C-glycoside bond (sulfone alkylation and hydrolysis²⁸) and the $C_{16}-C_{17}$ trans olefin (Julia–Lythgoe

(18) (a) Smith, J. B.; Smith, L.; Pettit, G. R. *Biochem. Biophys. Res. Commun.* **1985**, *132*, 939–945. (b) Berkow, R. L.; Kraft, A. S. *Biochem. Biophys. Res. Commun.* **1985**, *131*, 1109–1116. (c) DeVries, D. J.; Herald, C. L.; Pettit, G. R.; Blumberg, P. M. *Biochem. Pharm.* **1988**, *37*, 4069–4073.

(19) Hennings, H.; Blumberg, P. M.; Pettit, G. R.; Herald, C. L.; Shores, R.; Yuspa, S. *Carcinogenesis* **1987**, *8*, 1343–1346.

(20) It should be noted that 12-deoxy-13-acyl phorbol esters also bind to PKC and induce an antitumor response. As with the bryostatins, a mechanism for this discrepancy is under investigation, cf.: Szallasi, Z.; Krsmanovi, L.; Blumberg, P. M. *Cancer Res.* **1993**, *53*, 2507–2512.

(21) (a) Prendiville, J.; Crowther, D.; Thatcher, N.; Woll, P. J.; Fox, B.
W.; McGown, A.; Testa, N.; Stern, P.; McDermott, R.; Potter, M.; Pettit, G. R. Br. J. Cancer 1993, 68, 418–424. (b) Philip, P. A.; Rea, D.; Thavasu, P.; Carmichael, J.; Stuart, N. S. A.; Rockett, H.; Talbot, D. C.; Ganesan, T.; Pettit, G. R.; Balkwill, F.; Harris, A. L. J. Natl. Cancer Inst. 1993, 86, 812–1818. (c) Scheid, J.; Prendiville, J.; Jayson, G.; Crowther, D.; Fox, B.; Pettit, G. R. Cancer Immunol. Immunother. 1994, 39, 223–230. (d) Jayson, G. C.; Crowther, D.; Prendiville, J.; McGown, A. T.; Scheid, C.; Stern, P.; Young, R.; Brenchley, P.; Chang, J.; Owens, S.; Pettit, G. R. Br. J. Cancer 1995, 72, 461–468. (e) Varterasian, M. L.; Mohammad, R. M.; Eilender, D. S.; Hulburd, K.; Rodriguez, D. H.; Pemberton, P. A.; Pluda, J. M.; Dan, M. D.; Pettit, G. R.; Chen, B. D.; Al-Katib, A. M. J. Clin. Oncol. 1998, 16, 56–62. (f) Grant, S.; Roberts, J.; Poplin, E.; Tombes, M. B.; Kyle, B.; Welch, D.; Carr, M.; Bear, H. D. Clin. Cancer Res. 1944, 4, 611–618.

(22) (a) McGown, A. T.; Jayson, G.; Pettit, G. R.; Haran, M. S.; Ward, T. H.; Crowther, D. *Br. J. Cancer* **1998**, *77*, 216–220. (b) Koutcher, J. A.; Matei, C.; Zakian, K.; Ballon, D.; Schwartz, G. K. *Proc. Am. Assoc. Cancer Res.* **1998**, *39*, 191 (No. 1304).

(23) For a detailed review of the literature prior to early 1995, cf.: Norcross, R. D.; Paterson, I. Chem. Rev. 1995, 95, 2041-2114.

^{(17) (}a) Tallant, E. A.; Smith, J. B.; Wallace, R. W. Biochim. Biophys. Acta 1987, 929, 40–46. (b) May, W. S.; Sharkis, S. J.; Esa, A. H.; Gebbia, V.; Kraft, A. S.; Pettit, G. R.; Sensenbrenner, L. L. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 8483–8487. (c) Grant, S.; Pettit, G. R.; McCrady, C. Exp. Hematol. 1992, 20, 34–42. (d) Leonard, J. P.; May, W. S.; Ihle, J. N.; Pettit, G. R.; Sharkis, S. J. Blood 1988, 72, 1492–1496. (e) Sharkis, S. J.; Jones, R. J.; Bellis, M. L.; Demetri, G. D.; Griffin, J. D.; Civin, C.; May, W. S. Blood 1900, 76, 716–720. (f) McCrady, C. W.; Staniswalis, J.; Pettit, G. R.; Howe, C.; Grant, S. Br. J. Haematol. 1991, 77, 5–15.

olefination²⁹), provided three subunits of comparable complexity. Although each of these fragments could be readily synthesized, the presence of the exocyclic enoate moieties complicated the indicated fragment assemblage operations (vide infra). Accordingly, we revised our plan in order to accommodate a late-stage introduction of these groups (transform **T2**) while maintaining the same fragment coupling strategy (transform **T1***). Each of these strategies will be discussed in some detail in the text.

Both of the aforementioned approaches to the bryostatins utilize the same set of acyclic precursors (transform T3).

(25) (a) Evans, D. A.; Gauchet-Prunet, J. A.; Carreira, E. M.; Charette, A. B. J. Org. Chem. **1991**, 56, 741–750. (b) Evans, D. A.; Carreira, E. M. *Tetrahedron Lett.* **1990**, *31*, 4703–4706. (c) Evans, D. A.; Carreira, E. M.; Charette, A. B.; Gauchet, J. A. *Abstracts of Papers*, 196th National Meeting of the American Chemical Society, Los Angeles, CA, Fall 1998; American Chemical Society: Washington, DC, 1988; ORGN 209.

(26) (a) Kageyama, M.; Tamura, T.; Nantz, M. H.; Roberts, J. C.; Somfai,
P.; Whritenour, D. C.; Masamune, S. J. Am. Chem. Soc. 1990, 112, 7407–7408. (b) Blanchette, M. A.; Malamas, M. S.; Nantz, M. H.; Roberts, J. C.; Somfai, P.; Whritenour, D. C.; Masamune, S.; Kageyama, M.; Tamura, T. J. Org. Chem. 1989, 54, 2817–2825. (c) Masamune, S. Pure Appl. Chem. 1988, 60, 1587–1596.

(27) (a) Bartra, M.; Urpí, F.; Vilarrasa, J. In *Recent Progress in the Chemical Synthesis of Antibiotics and Related Microbial Products*; Lukacs, G., Ed.; Springer-Verlag: Berlin, 1993; Vol. 2. (b) Boeckman, R. K.; Goldstein, S. W. In *The Total Synthesis of Natural Products*; Apsimon, J., Ed.; Wiley: New York, 1988; Vol. 7, pp 1–139. (c) Paterson, I.; Mansuri, M. M. *Tetrahedron* **1985**, *41*, 3569–3624.

(28) (a) Ley, S. V.; Lygo, B.; Sternfeld, F.; Wonnacott, A. *Tetrahedron* **1986**, *42*, 4333–4342. (b) For a description of the development of this methodology, cf.: Ley, S. V.; Armstrong, A. In *Strategies and Tactics in Organic Synthesis*; Lindberg, T., Ed.; Academic Press: San Diego, 1991; Vol. 3, pp 237–292.

(29) (a) Julia, M.; Paris, J. M. *Tetrahedron Lett.* **1973**, 4833–4836. (b) Kocienski, P. J.; Lythgoe, B.; Ruston, S. *J. Chem. Soc., Perkin Trans. 1* **1978**, 829. (c) Review: Kocienski, P. *Phosphorus Sulfur* **1985**, 24, 97–127.

Inspection of these fragments (Scheme 1) reveals that they each contain a 1,3-*anti* diol unit, a fact which is consistent with the polyacetate-based biosynthesis of the bryostatins.³⁰ The presence of this stereoregular array served as the impetus for the development of two different stereoselective β -hydroxyketone reductions in our laboratory (eqs 1 and 2),³¹ both of which have been employed in the synthesis of a number of polyacetate and polypropionate natural products. In parallel with these studies,

we have developed two general strategies for the enantioselective synthesis of β -hydroxyketones, and representative examples of each are shown below (eqs 3 and 4).^{25a,32} The first approach (eq 3) relies on Sharpless asymmetric epoxidation³³ (or epoxidation with kinetic resolution) in order to establish the absolute asymmetry of an epoxystyrene precursor such as **3**. Subsequent protection, Birch reduction, and ozonolysis affords the β -hydroxyketoester. The second approach (eq 4) depends on aldol methodology to incorporate the absolute stereochemistry in β -hydroxyketoester **7**. Although the illustrated reaction derives its asymmetry from the chiral copper(II) complex **6**,³¹ variants of this procedure that utilize chiral methyl ketones³⁴ and/or chiral aldehydes³⁵ to establish the stereochemistry of the β -hydroxyketone have been documented.

(32) Evans, D. A.; Kozlowski, M. C.; Murry, J. A.; Burgey, C. S.; Campos, K. R.; Connell, B. T.; Staples, R. J. J. Am. Chem. Soc. **1999**, *121*, 669–685.

(33) Gao, R.; Hanson, J.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. **1987**, 109, 5765–5780.

⁽²⁴⁾ Recent work: (a) Kiyooka, S.; Maeda, H. *Tetrahedron: Asymmetry* 1997, *8*, 3371–3374. (b) Weiss, J. M.; Hoffmann, H. M. R. *Tetrahedron: Asymmetry* 1997, *8*, 3913–3920. (c) DeBrabander, J.; Kulkarni, B. A.; Garcia-Lopez, R.; Vandewalle, M. *Tetrahedron: Asymmetry* 1997, *8*, 1721–1724. (d) Lampe, T. F. J.; Hoffmann, H. M. R. *Tetrahedron Lett.* 1996, *37*, 7695–7698. (e) Lampe, T. F. J.; Hoffmann, H. M. R. *Chem. Commun.* 1996, 1931–1932. (f) De Brabander, J.; Vandewalle, M. *Pure Appl. Chem.* 1996, *68*, 715–718. (g) Kalesse, M.; Eh, M. *Tetrahedron Lett.* 1996, *37*, 1767–1770. (h) Ohmori, K.; Suzuki, T.; Nishiyama, S.; Yamamura, S. *Tetrahedron Lett.* 1995, *36*, 6519–6518. (i) Ohmori, K.; Nishiyama, S.; Wamamura, R. W.; Stiasny, H. C. *Tetrahedron Lett.* 1995, *36*, 4595–4598.

⁽³⁰⁾ Kerr, R. G.; Lawry, J.; Gush, K. A. Tetrahedron Lett. 1996, 37, 8305–8308.

^{(31) (}a) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. **1988**, *110*, 3560–3578. (b) Evans, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. **1990**, *112*, 6447–6449.

Both the epoxystyrene- and aldol-based strategies (eqs 3 and 4) have been combined with the reduction chemistry (eqs 1 and 2) in the syntheses of all three bryostatin acyclic building blocks illustrated in Scheme 1. Since the aldol/reduction approach is fundamentally more convergent and flexible, it is this method that has been utilized in the fragment syntheses described in the following three sections.³⁶

Synthesis of the C₁-C₉ Subunit

In consideration of the basic conditions of the C_9-C_{10} sulfone alkylation reaction (vide infra), we elected to mask the C_1 carboxyl terminus as a secondary amide,³⁷ and thus formulated **8** as the C_1-C_9 synthon. Retrosynthetic removal of the C_9 sulfone group and the C_1 amide group from **8** provides a protected 1,3,5-*anti*,*anti* triol, the synthesis of which has served as a focal point for highlighting polyacetate synthesis methodology.²³ As shown in Scheme 2, we elected to address the synthesis of this stereoarray using the aforementioned aldol/reduction strategy. The successful execution of this plan is illustrated in Scheme 3.

Scheme 2

The stereoselective synthesis of synthon **8a** began with the dibutylboron triflate-mediated aldol reaction between excess (4S)-3-chloroacetyl-4-phenylmethyl-2-oxazolidinone³⁸ (**10**) and the known³⁹ 2,2-dimethyl-4,4-diphenyl-3-butenal (**9**), providing

(36) For a discussion of the earlier approaches based on the epoxystyrene synthon strategy, cf.: (a) Carreira, E. M. Ph.D. Thesis, Harvard University, 1990.
(b) Gauchet-Prunet, J. A. Ph.D. Thesis, Harvard University, 1993.
(37) Evans, D. A.; Carter, P. H.; Dinsmore, C. J.; Barrow, J. C.; Katz,

J. L.; Kung, D. W. Tetrahedron Lett. **1997**, *38*, 4535–4538.

(38) Evans, D. A.; Sjogren, E. B.; Weber, A. E.; Conn, R. E. *Tetrahedron* Lett. **1987**, 28, 39–42.

(39) (a) Julia, M.; Baillarge, M. Bull. Soc. Chim. Fr. 1966, 734–742.
(b) Zimmerman, H. E.; Pratt, A. C. J. Am. Chem. Soc. 1970, 92, 6259–6267.

aldol **11** as a 9:1 mixture of diastereomers. Removal of the halide auxiliary was effected with zinc dust in glacial acetic acid³⁷ and afforded diastereomerically pure β -hydroxyimide **12** after silica gel chromatography. Subsequent reduction of the imide with lithium borohydride⁴⁰ gave the enantiopure diol **13** in 67% overall yield for the three steps and provided a 71% yield of recovered (4*S*)-4-phenylmethyl-2-oxazolidinone. The synthesis of aldehyde **15** was then completed in 90% yield with a simple three-step sequence of acetalization, regioselective reductive acetal cleavage (DIBAl-H, 0 °C),⁴¹ and hydroxyl oxidation.

The aldol coupling of bis(trimethylsilyl)dienol ether **5b** with aldehyde 15 was only modestly stereoselective under standard conditions (MgBr₂•OEt₂, BF₃•OEt₂). While strong Lewis acids (TiCl₄, TiCl₃(Oi-Pr), SnCl₄) did not effect a clean reaction with 15, the use of the mixed titanium species TiCl₂(Oi-Pr)₂ (CH₂-Cl₂, -78 °C) delivered a high-yielding, stereoselective reaction (93% yield, 6:1 diastereoselection).⁴² The selectivity for this reaction could be improved with a modest reduction in chemical yield by using toluene as the reaction solvent (83% yield, 15:1 diastereoselection), a result which is consistent with the operation of electrostatic effects as the stereochemical control element.35 The subsequent hydroxyl-directed anti reduction of aldol 16 (Me₄NHB(OAc)₃, MeCN/AcOH, -35 °C)^{31a} proceeded smoothly, affording the diol 17 in good yield and stereoselectivity (ca. 10:1).43 Lactonization under acidic conditions differentiated the diol functionality, and the remaining hydroxyl group was then silvlated to provide lactone 18 in diastereomerically pure form after silica gel chromatography.

To advance lactone 18 to the complete A-ring fragment 8a, we needed only to perform operations on the two termini of the fragment. Thus, lactone 18 was converted to anilide 19 in acceptable yield using the aluminate derived from trimethylaluminum and aniline hydrochloride. Treatment of 19 with ozone (10:1 CH₂Cl₂:MeOH, -78 °C) provided the cyclized lactols 20 as a 1.5:1 (β : α) mixture of anomers in 72% yield. This transformation was plagued by two side reactions-epoxidation of the C₉ olefin (ca. 20% yield)⁴⁴ and oxidation of the p-methoxybenzyl group to a benzoate (ca. 5% yield)-which necessitated the use of minimal methanol in the solvent mixture and a rapid quench to provide for optimal material throughput. Preliminary experimental and computational results indicate that a subtle conformational effect is probably responsible for the spurious reactivity of 19 with ozone and its complete unreactivity toward dihydroxylation agents.⁴⁵ The product lactols 20

(43) The anti stereoselectivity for the reduction step was established by ¹H NMR NOE analysis of lactone **18**.

(44) (a) Epoxidation of hindered olefins via the sterically less encumbered "end-on" approach of ozone to the olefin has been well documented, cf.: Bailey, P. S. *Ozonation in Organic Chemistry*; Academic: New York, 1978; Vol. 1, Chapter 11. (b) While the oxirane byproduct could not be converged to **20**, it could be recycled back to the starting olefin **19** via reductive removal of the oxygen (SmI₂, 50% yield, unoptimized).

(45) Molecular mechanics calculations (MM2 force field) indicate that the C₃ TBS ether forces the C₇ *p*-methoxybenzyl ether to rotate over the C₉ olefin. With the lactone **18**, where the TBS ether is conformationally constrained and the PMB ether can rotate away from the olefin (MM2), no epoxidation was observed. This product aldehyde could not be advanced to **20**.

^{(34) (}a) Evans, D. A.; Coleman, P. J.; Côté, B. J. Org. Chem. **1997**, 62, 788–789. (b) Lagu, B. R.; Liotta, D. C. Tetrahedron Lett. **1994**, 35, 4485–4488. (c) Trost, B. M.; Urabe, H. J. Org. Chem. **1990**, 55, 3982–3983. (d) Paterson, I.; Goodman, J. M.; Isaka, M. Tetrahedron Lett. **1989**, 30, 7121–7124.

⁽³⁵⁾ Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G. J. Am. Chem. Soc. 1996, 118, 4322-4343 and references therein.

⁽⁴⁰⁾ Penning, T. D.; Djuric, S. W.; Haack, R. A.; Kalish, V. J.; Miyashiro, J. M.; Rowell, B. W.; Yu, S. S. Synth. Commun. **1990**, *20*, 307–312.

^{(41) (}a) Johansson, R.; Samuelsson, B. J. Chem. Soc., Chem. Commun. **1984**, 201. (b) Johansson, R.; Samuelsson, B. J. Chem. Soc., Perkin Trans. *I* **1984**, 2371–2374.

^{(42) (}a) A similar result was obtained in the Felkin-selective addition to an α -substituted aldehyde during our synthesis of Lepicidin, cf.: Evans, D. A.; Black, W. C. *J. Am. Chem. Soc.* **1993**, *115*, 4497–4513. (b) The anti stereoselectivity for the aldol step was established by ¹H NMR NOE analysis of sulfone **8**.

^{*a*} Key: (a) 1.9 equiv of **10**, Bu₂BOTf, i-Pr₂NEt, then **9**, CH₂Cl₂, $-78 \rightarrow 0$ °C, 20 h; (b) Zn, 2:1 THF/AcOH; (c) LiBH₄, MeOH, THF, 0 °C; (d) (i) PMPCH(OME)₂, 10 mol % PPTS, CH₂Cl₂, (ii) DIBAl-H, CH₂Cl₂, 0 °C; (e) (COCl)₂, DMSO, NEt₃, CH₂Cl₂, -78 °C; (f) TiCl₂(Oi-Pr)₂, PhCH₃, -78 °C, then **5b**, -78 °C; (g) Me₄NHB(OAc)₃, AcOH/MeCN, -35 °C; (h) PPTS, PhH, 80 °C; (i) TBSOTf, 2,6-lutidine, CH₂Cl₂, -10 °C; (j) Me₃Al, HCl·H₂NPh, CH₂Cl₂, 30 °C, then **18**, 0 °C; (k) O₃, 10:1 CH₂Cl₂/MeOH, -78 °C, then Me₂S; (l) Ac₂O, pyr; (m) PhSTMS, ZnI₂, n-Bu₄NI, CH₂Cl₂; (n) m-CPBA, NaHCO₃, EtOAc.

were selectively acetylated in the presence of the anilide using acetic anhydride/pyridine (2 days, 23 °C) and then converted into the α -sulfide (TMSSPh, ZnI₂, *n*-Bu₄NI)⁴⁶ in good yield and diastereoselectivity (86% yield, 93:7 α : β).⁴⁷ Oxidation with *m*-CPBA under buffered conditions (solid NaHCO₃, EtOAc) provided the analytically pure sulfone **8a** in good yield.

Synthesis of the C₁₀-C₁₆ Subunit

Retrosynthetic excision of the exocyclic enoate from the B-ring fragment **21** may be executed in either a diastereoselective (PG \neq PG') or enantioselective (PG = PG') sense to afford a β -*C*-glycoside (Scheme 4). Subsequent removal of the C₁₆ hydroxymethyl group affords a δ -lactone, which may be obtained from the known^{25a} 3,5,6-trishydroxy ester. The reduction of this plan to practice is shown in Schemes 5 and 6.

Scheme 4

Scheme 3^a

At the time our work began, an enantioselective aldol-based approach to δ -hydroxy- β -ketoesters (eq 4) was not available. Thus, our initial synthesis of the fragment began with the hydroxyl-directed anti reduction of **4**,^{25a,31a} which afforded diol **22** in good yield and stereoselectivity (Scheme 5). Cyclization of the diol ester occurred readily under acidic conditions (PPTS, PhH, 80 °C) and was followed by quantitative silylation of the C₁₃ alcohol to give lactone **23**. One-carbon homologation of **23** using benzyloxymethyllithium⁴⁸ proceeded smoothly to

afford an α -lactol as a single diastereomer.⁴⁹ The subsequent reduction of the lactol using the conditions of Kishi (BF₃·OEt₂, Et₃SiH)⁵⁰ was highly stereoselective (20:1 cis:trans)⁵¹ and was accompanied by Lewis acid-catalyzed desilylation at C₁₃ to deliver the alcohol **24** in 89% yield. Removal of the bulky triisopropylsilyl ether (TBAF, THF, 0 °C), global silylation (TBSOTf, 2,6-lutidine, -78 °C), and hydrogenolysis of the benzyl ether provided the *cis,cis*-2,4,6-tetrahydropyran **25** in good yield. Oxidation to the labile C₁₆ aldehyde **26** was best accomplished using the method of Swern.

The illustrated route to **26** provided multigram quantities of **26** and allowed for the synthesis of the complete B-ring synthon via alcohol **24** (cf. Scheme 6). Once our exploratory experiments indicated that aldehyde **26** would be our target fragment (vide infra), we opted to incorporate our newly discovered catalytic aldol chemistry (eq 4)³² into the synthesis of this fragment (Scheme 5, *ent*-7 \rightarrow **26**). Both of these approaches follow parallel chemical strategies (Scheme 5), but the second route is four steps shorter overall.⁵²

Our initial efforts toward the bryostatin synthesis (Scheme 1, transform **T1**) required that we synthesize the complete C_{10} – C_{16} synthon **21**, and our studies in this area are illustrated in Scheme 6. Oxidation⁴¹ of alcohol **24** was followed by reductive removal of the benzyl protecting group (H₂, 10% Pd/C) to afford hydroxyketone **31** in 77% overall yield. Preliminary attempts to effect the intermolecular phosphonate condensation between **31** and trimethylphosphonoacetate under a variety of standard conditions provided the exocyclic enoate *E*-**34** in moderate yield (70%) and poor stereoselection (ca. 70:30 *E:Z*),⁵³ so we turned

(51) The stereochemical outcome of the silane reduction was apparent from the high-field ¹H NMR spectrum of tetrahydropyran **24** (400 MHz, C₆D₆), which displayed identical axial (11 Hz) and equatorial (4.6 Hz) couplings for both ring methylenes (C₁₂ and C₁₄).

(52) Three steps are saved by the incorporation of the aldol chemistry, and one step is saved by the use of an in situ deprotection of the C_{10} PMB ether.

^{(46) (}a) Hanessian, S.; Guindon, Y. *Carbohydr. Res.* 1980, 86, C3. (b) Nicolaou, K. C.; Daines, R. A.; Ogawa, Y.; Chakraborty, T. K. *J. Am. Chem. Soc.* 1988, *110*, 4696–4705. (c) Evans, D. A.; Truesdale, L. K.; Grimm, K. G.; Nesbitt, S. L. *J. Am. Chem. Soc.* 1977, *99*, 5099–5116.

⁽⁴⁷⁾ Both the minor β -anomer and the C₇ *p*-methoxybenzoate impurity were removed at this stage by flash chromatography.

⁽⁴⁸⁾ Still, W. C. J. Am. Chem. Soc. 1978, 100, 1481-1486.

⁽⁴⁹⁾ The stereochemical assignment was based on the presence of a 2-Hz W-coupling between the lactol hydrogen and $C_{14}H_{ax}$. Given the propensity for lactols to equilibrate in aqueous media, this stereochemistry may arise from a postaddition isomerization, cf.: Dondoni, A.; Schurmann, M.-C. J. Org, Chem. **1994**, 59, 6404–6412.

⁽⁵⁰⁾ Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 4976-4978.

^{(53) (}a) The reaction of trimethylphosphonoacetate with ketone **31** was screened under three conditions: LiCl, NEt₃, MeCN, 23 °C, 2 days (66:33 *E:Z*, 50% conversion); NaH, PhCH₃, 23 °C, 90 min. (70:30 *E:Z*); KHMDS, THF, 0 °C, 30 min. (50:50 *E:Z*). (b) Recent results from the laboratory of H. M. R. Hoffmann indicate that the exocyclic *ethyl* ester may be installed in good stereoselectivity (9:1 *E:Z*, 72% yield); cf. ref 24e.

Scheme 5^a

^{*a*} Key: (a) Me₄NHB(OAc)₃, AcOH/MeCN, -35 °C; (b) PPTS, 0.01 M PhH, 80 °C, -MeOH; (c) TESCl, imidazole, CH₂Cl₂, 0 °C; (d) BnOCH₂Li, THF, $-78 \rightarrow -50$ °C; (e) BF₃·OEt₂, Et₃SiH, CH₂Cl₂, -20 °C; (f) TBAF, THF, 0 °C; (g) TBSOTf, 2,6-lutidine, CH₂Cl₂, -78 °C; (h) 1 atm H₂, catalytic 10% Pd/C, AcOH, EtOAc; (i) (COCl)₂, DMSO, NEt₃, CH₂Cl₂, $-78 \rightarrow -50$ °C; (j) F₃CCO₂H, CH₂Cl₂; (k) PMBOCH₂Li, THF, $-78 \rightarrow -50$ °C; (l) TBSCl, imidazole, DMAP, CH₂Cl₂.

Scheme 6^a

^{*a*} Key: (a) (COCl)₂, DMSO, NEt₃, -78 °C; (b) H₂, 10% Pd/C, catalytic AcOH, EtOAc; (c) (EtO)₂P(O)CH₂CO₂(CH₂)₅CO₂H, BOPCl, DMAP, CH₂Cl₂; (d) 50 equiv of LiCl, 2 equiv of DBU, 1 mM MeCN; (e) K₂CO₃, MeOH; (f) NaHMDS, 2 equiv of **35a**, THF, -78 °C, then **31**, $-78 \rightarrow 0$ °C; (g) DMTrCl, i-Pr₂NEt, DMAP, CH₂Cl₂; (h) (i) TBAF, THF, 0 °C; (ii) Tf₂O, 2,6-lutidine, CH₂Cl₂, -10 °C.

to the use of the tethered phosphonate strategy^{25b} (Scheme 6). Acylation of the C₁₆ hydroxyl of **31** with 6-[(diethoxyphosphonyl)acetyl]oxyhexanoic acid^{25b} (BOPCl, DMAP) provided phosphonate **32**, which was readily cyclized under soft enolization conditions (LiCl, syringe pump addition of 2 equiv of DBU)⁵⁴ to afford enoate **33** in 63% yield and excellent stereoselectivity (>95:5 *E:Z*, ¹H NMR). The subsequent cleavage of the tether (K₂CO₃, MeOH, 23 °C)^{25b} proceeded without incident to afford enoate *E*-**34** in 74% yield (43% yield overall).⁵⁵ We speculated that the use of a chiral phosphonate reagent⁵⁶ might improve the process and thus examined the use of methyl (*R*)-[(2,2'-bishydroxy-1,1'-binaphthyl)phosphonyl]acetate (**35a**), a reagent introduced by Fuji.⁵⁷ We found that the condensation of the sodium anion of **35a** with hydroxyketone **31** (THF, $-78 \rightarrow 0$ °C) afforded a 58% yield (unoptimized) of a 79:21 mixture of

E- and *Z*-**34**, which could be separated by silica gel chromatography (Scheme 6).

The olefination of **30** with chiral phosphonate **35a** was also evaluated (eq 5). A careful study of reaction parameters⁵⁸ led to acceptable (*E*) selectivity (84:16 *E*:*Z*,), and this diastereoselection could be further improved (92:8 *E*:*Z*) by utilizing the more hindered phosphonate^{57b} **35b**. Taken together with the fact that phosphonate **35a** is a (*Z*)-selective olefinating reagent with aldehydes,⁵⁹ these data point to a mechanism of stereoinduction in which the kinetic facial bias exerted by **35a** in the initial aldol step is transferred to enoate geometry through kinetic trapping of the intervening aldolate.⁶⁰

Synthesis of the C₁₇-C₂₇ Subunit

In analogy with our previous work on cytovaricin,⁶¹ we planned to carry the C-ring exocyclic enoate through the Julia coupling as its exocyclic acid in order to avoid any problems with proton transfer, and we thus formulated the C-ring synthon as **38**. Retrosynthetic removal of the exocyclic acid and C_{19} - C_{20} diol afforded glycal **39**, which could be derived from the acyclic precursor via cyclization/dehydration (Scheme 7). This protected ketotriol was then dissected into ketone **40** and ketoaldehyde **41** using our aldol/reduction strategy. The imple-

(61) Evans, D. A.; Kaldor, S. W.; Jones, T. K.; Clardy, J.; Stout, T. J. J. Am. Chem. Soc. 1990, 112, 7001-7031.

⁽⁵⁴⁾ Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. *Tetrahedron Lett.* **1984**, *25*, 2183–2186.

⁽⁵⁵⁾ The geometry of the olefin in *E*-**34** was evident from the NOE enhancement between the exocyclic vinyl-H and the equatorial C_{12} H and the pronounced deshielding of the C_{14} equatorial proton relative to the C_{12} equatorial proton. The opposite deshielding pattern was seen for the *Z* isomer.

⁽⁵⁶⁾ For leading references to the recent literature, cf.: (a) Abiko, A.; Masamune, S. *Tetrahedron Lett.* **1996**, *37*, 1077–1080. (b) Denmark, S. E.; Rivera, I. J. Org. Chem. **1994**, *59*, 6887–6889.

^{(57) (}a) Tanaka, K.; Ohta, Y.; Fuji, K.; Taga, T. *Tetrahedron Lett.* **1993**, 34, 4071–4074. (b) Tanaka, K.; Otsubo, K.; Fuji, K. *Tetrahedron Lett.* **1996**, 37, 3735–3738.

⁽⁵⁸⁾ The following parameters were examined: counterion (Li, Na, K, and Zn), solvent (THF, Et₂O, PhCH₃, and THF/HMPA), and temperature $(0, -35, -65, \text{ and } -78 \text{ }^{\circ}\text{C})$.

^{(59) (}a) The reaction of either **35a** or **35b** with dihydrocinnamaldehyde (NaHMDS, THF, -78 °C) afforded an 82:18 *Z:E* mixture of olefins. (b) The *Z* stereoselectivity of achiral phenolic phosphonates with simple aldehydes has recently been documented, cf.: Ando, K. *J. Org. Chem.* **1997**, *62*, 1934–1939.

⁽⁶⁰⁾ For discussions regarding the mechanism of the Horner–Wadsworth–Emmons olefination, cf.: (a) Maryanoff, B. E.; Reitz, A. B. *Chem. Rev.* **1989**, 89, 863. (b) Vedejs, E.; Peterson, M. J. *Top. Stereochem.* **1994**, 21, 1–157.

Scheme 7

mentation of this plan for the synthesis of **38** and **39** is shown in Schemes 8 and 9.

Conversion of 2,2-dimethyl-1,3-propanediol (42) into the sulfonylaldehyde 43 proceeded over four standard steps (Scheme 8: monotosylation, sulfide displacement, sulfide oxidation, and alcohol oxidation) in 76% overall yield and was routinely performed on large (>500 mmol) scale. Reaction of aldehyde 43 with the Grignard reagent derived from 5-bromo-1-pentene (CH₂Cl₂/Et₂O, 0 °C) was followed by Swern oxidation (CH₂- Cl_2 , $-78 \rightarrow 0$ °C) to provide a C_{19} ketone in 82% yield for the two steps.62 Oxidation of the terminal alkene was best accomplished using an osmium-mediated dihydroxylation (catalytic in K₂OsO₄•(OH₂)₂)⁶³ and was followed by diol cleavage with sodium periodate to afford the desired keto aldehyde 41a as a white solid in 95% yield overall. The requisite ketone partner 40 for the ensuing aldol reaction was prepared using a kinetic resolution strategy,33 as shown in Scheme 8. The indicated route (resolution, protection, ozonolysis) is operationally convenient (three steps, one purification) and proceeds well on large scale (>250 mmol).

Reaction of **41a** with the lithium enolate of **40** was both low yielding (<40% yield) and poorly diastereoselective (<3:1). After some optimization,⁶⁴ it was found that the aldol reaction of **40** and **41a** could be efficiently mediated using the chiral IPC enolates⁶⁵ of Paterson and Brown (Scheme 8); reaction of a slight excess of the chiral boron enolate of **40** with **41a** delivered aldol **46** in 86% yield and 93:7 diastereoselectivity. As shown in eq 6, the success of the (–)-DIPCl⁶⁶ reaction is a result of double stereodifferentiation: reaction of **40** and propionaldehyde with (–)-DIPCl afforded the desired 5*S* diastereomer with enhanced diastereoselection, and (+)-DIPCl afforded the undesired 5*R* diastereomer in lower diastereoselectivity and chemical yield.⁶⁷

With aldol adduct **46** in hand, we focused on completing the synthesis of the 1,2,4-*syn,anti* stereochemical array (Scheme 8). Directed reduction^{31a} of **46** with Me₄NHB(OAc)₃ was both

regio- and diastereoselective, but the resulting 1,3-diol was difficult to differentiate in a high-yielding manner. Accordingly, we turned to the samarium-catalyzed Tishchenko reduction^{31b} of aldol **46** (catalytic SmI₂, excess *p*-NO₂PhCHO), which provided diastereomerically pure nitrobenzoate **47** in excellent yield, regioselectivity, and diastereoselectivity (>95:5 ds).⁶⁸ The product diol monoester **47** was next silylated (TBSOTf, 2,6-lutidine) and deprotected (LiOH, aqueous THF/MeOH) to afford the target hydroxyketone **48** in 90% overall yield.⁶⁹ The synthesis of glycal **39a** was completed by the dehydration of **48** under acidic conditions (catalytic CSA, PhH, azeotropic removal of water at 80 °C, 92–96% yields).

The synthesis of the C_{17} - C_{27} glycal **39** (Scheme 8) was very reliable on large scale and was independently carried out with a variety of functional groups at C₁₇ (SO₂Ph, SO₂(N-Me)Im,⁷⁰ 3,4-(MeO)₂PhCH₂O) in order to assay different coupling strategies (vide infra). For the sake of illustration, the elaboration of the imidazolyl sulfone glycal **39b** to the complete $C_{17}-C_{27}$ synthon is detailed below (Scheme 9). Epoxidation of glycal **39b** with *m*-CPBA proceeded with in situ methanolysis to afford the hydroxyketal as a mixture of four diastereomers (¹H NMR analysis), which was immediately oxidized with the Dess-Martin periodinane⁷¹ to give the ketone **49** as an inseparable 4.5:1 mixture of diastereomers in 61% overall yield.⁷² Ketone 49 was readily condensed with glyoxylic acid monohydrate under basic conditions (aqueous NaOH, THF, 23 °C)⁷³ to give the exocyclic carboxylic acid (single olefin isomer), which was directly esterified by *brief*⁷⁴ treatment with dimethylformamide dimethylacetal in refluxing benzene to provide the (E) olefin 50 in 77% yield for the two-step procedure. Since this compound was prone to olefin isomerization, it was immediately reduced under Luche conditions (NaBH₄, CeCl₃)⁷⁵ to afford the axial alcohol 51 as a single diastereomer-an outcome which is consistent with steric control of the approach of the borohydride

(65) (a) Ramachandran, P. V.; Xu, W.-C.; Brown, H. C. *Tetrahedron Lett.* **1996**, *37*, 4911–4914. (b) Paterson, I.; Goodman, J. M.; Lister, M. A.; Schumann, R. C.; McClure, C. K.; Norcross, R. D. *Tetrahedron* **1990**, *46*, 4663–4684.

(66) DIPCl is a trademark of the Aldrich Chemical Co. (DIP = diisopinocampheyl).

(67) Assuming a base level selectivity of 89:11 for the reaction of *n*-alkylaldehydes with these IPC enolates (ref 65b), our stereoselectivities are roughly in accord with the precepts for double diastereodifferentiation: calculated value = $8/1 \times 2.2/1 = 17.8/1$ ratio of *S/R*; actual value = 19/1; cf.: Masamune, S.; Choy, W.; Peterson, J. S.; Sita, L. R. *Angew. Chem., Int. Ed. Engl.* **1985**, *24*, 1–30.

(68) Analysis of the NOE spectrum of an ortho ester derivative of **47** (synthesized in two steps: (i) LiOH, (ii) DDQ, K₂CO₃) secured the stereochemical assignment for both the aldol and reduction steps.

(69) Note that the use of *p*-nitrobenzoate as the C_{23} hydroxyl protecting group was critical to the success of this sequence ($46 \rightarrow 48$): the C_{23} acetate was too labile and underwent migration during the silylation reaction, and the C_{23} benzoate was too difficult to remove.

(70) The use of *N*-methyl imidazolyl sulfones has been reported to improve the Julia olefination, cf.: Kende, A. S.; Mendoza, J. S. *Tetrahedron Lett.* **1990**, *31*, 7105–7108.

(71) (a) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. **1991**, *113*, 7277–7287. (b) For an improved preparation of the reagent, cf.: Ireland, R. E.; Liu, L. J. Org. Chem. **1993**, *58*, 2899.

(72) Inexplicably, the yields for this two-step transformation were much higher in the phenyl sulfone (81%) and dimethoxybenzyl (100%) series. The diastereoselectivity was unaffected by the C_{17} substituent.

(73) Pettit, G.; Green, B.; Dunn, G. L. J. Org. Chem. 1970, 35, 1367-1376.

(74) Reaction times longer than 20–30 min provided for considerably reduced yields because of olefin isomerization ($E \rightarrow Z$).

(75) Luche, J. L. J. Am. Chem. Soc. 1978, 100, 2226.

^{(62) (}a) The use of methylene chloride as a cosolvent was essential. (b) Addition of this Grignard reagent to the C_{19} carboxylic acid or Weinreb amide was low-yielding.

^{(63) (}a) Minato, M.; Yamamoto, K.; Tsuji, J. J. Org. Chem. **1990**, 55, 766–768. (b) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. **1994**, 94, 2483–2547.

^{(64) (}a) A study of the aldol reaction of **40** (and other protected variants: TBDPS, MEM, BOM, Bn) with propionaldehyde demonstrated that only moderate yields (25-50%) and low selectivities (<3:1 diastereoselection in the desired sense) could be obtained using a wide array of metal centers (Li, B, Sn, Zn, Mg, Ti) and enolization conditions. (b) For the obtainment of the undesired 1,4-*syn* diastereomer in high stereoselectivity, cf. ref 34c.

Scheme 8^a

^{*a*} Key: (a) 0.2 equiv of TosCl, pyr, CH₂Cl₂, $0 \rightarrow 23$ °C; (b) PhSH, NaH, DMF, 80 °C; (c) m-CPBA, CH₂Cl₂, $0 \rightarrow 23$ °C; (d) (COCl)₂, DMSO, NEt₃, CH₂Cl₂, $-78 \rightarrow 0$ °C; (e) BrMg(CH₂)₃CH=CH₂, 1:1 Et₂O/CH₂Cl₂, $0 \rightarrow 23$ °C; (f) (COCl)₂, DMSO, NEt₃, CH₂Cl₂, $-78 \rightarrow -50$ °C; (g) 2 mol % K₂OsO₄(OH₂)₂, 2 mol % quinuclidine, K₃Fe(CN)₆, K₂CO₃, 1:1 t-BuOH/H₂O; (h) NaIO₄, NaHCO₃, 2:2:1 t-BuOH/H₂O/THF; (i) 15 mol % L-(+)-DIPT, 10 mol % Ti(Oi-Pr)₄, 0.7 equiv of t-BuO₂H, CH₂Cl₂, -20 °C; (j) NaH, PMBBr, catalytic n-Bu₄NI, THF, $0 \rightarrow 23$ °C; (k) O₃, CH₂Cl₂/MeOH, -78 °C, then Me₂S, $-78 \rightarrow 23$ °C; (l) **40**, (-)-DIPCl, NEt₃, CH₂Cl₂, -78 °C; then **41a**, -70 °C; (m) 20 mol % SmI₂, *p*-NO₂PhCHO, THF, 0 °C; (n) TBSOTf, 2,6-lutidine, CH₂Cl₂, -15 °C; (o) LiOH, 2:2:1 THF/MeOH/H₂O; (p) 5 mol % CSA, PhH, 80 °C.

reagent. The desired exocyclic carboxylic acid **38b** could be synthesized along similar lines: introduction of the exocyclic *tert*-butyl ester was accomplished using the aldol condensation of *tert*-butylglyoxylate⁷⁶ and the potassium enolate of **49** and was followed immediately by Luche reduction to give the diastereomerically pure alcohol **52** (54% yield, two steps). Deprotection of the *tert*-butyl ester using trimethylsilyl triflate⁷⁷ proceeded with concomitant protection of the axial alcohol to provide the target acid **38b** in 84% yield.⁷⁸

Fragment Coupling

Our initial studies on the A–B fragment coupling utilized *tert*-butyl amide⁷⁹ **8b** and triflate⁸⁰ **53** and revealed that the lithiated dianion of sulfone **8b** could be condensed with **53** in the presence of HMPA at -78 °C (eq 7). Upon warming of the reaction mixture to room temperature,⁸¹ elimination of phenyl sulfinate⁸² afforded enol ether **54** (45% yield), which could be converted to the C₉ mixed methyl ketal using trichloroacetic acid in methanol (66% yield, 30% overall). However, when the dianion of sulfone **8b** was added to the fully functionalized triflate **21**, the enol ether **55** was only isolated in ca. 7% yield (eq 8). The majority of the sulfone **8b** was recovered unchanged from this reaction, and the bulk of triflate **21** had been converted into a C₁₀–C₁₂ cyclopropane,⁸³ presumably via a proton-transfer/ intramolecular alkylation sequence.

Scheme 9^a

^{*a*} Key: (a) m-CPBA, MeOH, -20 °C; (b) Dess–Martin periodinane, pyr, CH₂Cl₂; (c) OHCCO₂H, aqueous NaOH, THF; (d) (MeO)₂CHNMe₂, PhH, 80 °C; (e) NaBH₄, CeCl₃·(OH₂)₇, MeOH, -78 °C; (f) KOt-Bu, OHCCO₂t-Bu, THF, -15 °C; (g) TMSOTf, 2,6-lutidine, CH₂Cl₂, 0 °C.

It was eventually discovered that the use of the *tert*-butyl amide **8b** was not synthetically viable,⁸⁴ and so we turned to the use of other amide residues. Interestingly, the use of a C_1

(76) Subasinghe, N.; Schulte, M.; Chan, M. Y.-M.; Roon, R. J.; Koerner, J. F.; Johnson, R. L. J. Med. Chem. **1990**, *33*, 2734–2744.

(77) (a) Jones, A. B.; Villalobos, A.; Linde, R. G.; Danishefsky, S. J. J. Org. Chem. **1990**, 55, 2786. (b) Evans, D. A.; Ng, H. P.; Rieger, D. L. J. Am. Chem. Soc. **1993**, 115, 11446–11459.

(78) Irradiation of either the exocyclic olefin resonance or the equatorial proton at C₂₀ produced a large NOE enhancement of the other resonance. Likewise, the chemical shifts and coupling constants of C₂₀H_{eq} and C₂₂H_{eq} were in accord with the assigned stereochemistry.

(79) The preparation of *tert*-butyl amide **8b** was identical to that for anilide **8a**, with the exception of the transamidation of lactone **18** (*t*-BuNH₂, Me₂AlCl, THF, room temperature, 16 h, 96% yield).

(80) (a) Triflate **53** was prepared from alcohol **24** in three steps and 89% overall yield: (i) Bz₂O, DMAP; (ii) TBAF, THF, 0 °C; (iii) Tf₂O, 2,6-lutidine, -10 °C. See the Supporting Information for details. (b) Note that the analogous C₁₀ iodide was not reactive toward C₉ sulfonyl anions.

(81) If the reaction was quenched at lower temperatures (0 or -15 °C), significant amounts of the C₉ lactol were obtained, indicating that the sulfinate elimination was slower than the anion alkylation.

(82) This is consistent with the results of both Ley and Beau; cf. ref 28 and the following: Beau, J.-M.; Sinay, P. *Tetrahedron Lett.* **1985**, *26*, 6189–6192.

benzyl (or PMB) amide resulted in the production of large amounts of the N₁,C₉-bisalkylation product, even at low reaction temperatures. This side reaction could be avoided by attenuating the nucleophilicity of the amide residue; the dianion of *N*-phenyl sulfone **8a** alkylated exclusively at the carbon center, giving the unstable⁸⁵ ketal **56** in 46% overall yield after methanolysis (eq 9).⁸⁶ With this result, we delayed further attempts at optimization until the real C₉-C₁₀ coupling was at hand (vide infra).

Our initial study of the $C_{16}-C_{17}$ Julia olefination utilized carboxylic acid **38b** in order to supress C_{22} enolization of the enoate moiety.⁸⁷ Unfortunately, we found that reaction at C_{17} could *not* be achieved, regardless of the experimental conditions⁸⁸ employed. Rather, the use of strong bases promoted deprotonation on the imidazole ring, as judged by quenching of the orange dianion of **38b** with deuterium chloride or simple aldehydes (eq 10).⁸⁹ In an attempt to override this preference

for spurious deprotonation, we examined a variety of structural modifications, including the use of the reduced oxidation state at the exocyclic ester, an unprotected hydroxyl at C_{20} ,⁹⁰ and the phenyl sulfone at C_{17} .⁹¹ Unfortunately, a high-yielding C_{16} - C_{17} olefination was never obtained.

Since the problems associated with the Julia olefination stemmed from either the inability to enolize the sulfonylmethylene or the excessive basicity of the resultant anion, it was reasoned that the reverse coupling approach (unhindered C_{16} sulfone and unenolizable C_{17} aldehyde) might be successful.⁹² Indeed, our first results with *N*-methyl imidazolyl sulfone⁹³ (**57**) were encouraging (eq 11): the lithium anion of **57** could be coupled with 3-benzyloxy-2,2-dimethylpropanal to give **58** in

(85) Ketal **56** was completely unstable when stored neat and reverted back to the enol ether and lactols after even 10-30 min at room temperature. In contrast, the benzyl, PMB, and *t*-Bu amide analogues were perfectly stable, even after prolonged storage.

(86) An equivalent amount of product could be isolated from the twostep, one-pot variant: Li₂-**8a** and **53**, THF, $-78 \rightarrow -15$ °C, then MeOH, Cl₃CCO₂H quench. The avoidance of HMPA required that a higher temperature be utilized in the alkylation step.

(87) Use of the methyl C_{20} -hydroxyester **51** was complicated by deprotonation at C_{22} (data not shown).

(88) (a) The following variables were screened: base (*n*-BuLi, PhLi, LDA, LiNEt₂); solvent (THF, THF/HMPA); temperature (-78 °C, -40 °C); and aldehyde (*i*-PrCHO, *t*-BuCHO, PhCHO). (b) In addition, the following additives were evaluated: LiBr, MgBr₂·OEt₂ (Danishefsky, S. J.; Selnick, H. G.; Zelle, R. E.; DeNinno, M. P. J. Am. Chem. Soc. **1988**, *110*, 4368), and BF₃·OEt₂ (Achmatowicz, B.; Baranowska, E.; Daniewski, A. R.; Pankowski, J.; Wicha, J. Tetrahedron **1988**, *44*, 4989).

(89) The spurious deprotonation of *phenyl* sulfones is a common problem. Although our model studies clearly indicated that the *N*-methyl imidazolyl sulfone exerts a more powerful α -acidfying effect than the phenyl sulfone, this is apparently not enough to override the tremendous steric compression about C₁₇.

(90) Low yield (<20%) of the desired product could be obtained when the exocyclic ester was reduced *and* the C_{20} hydroxyl group was left unprotected, provided LiNEt₂ was used as the base.

(91) While enolization of the C_{20} -hydroxy C_{17} -phenyl sulfone could be accomplished, the resultant anion (or modified variants thereof) proved to be more basic than nucleophilic.

good yield (LiBr,⁹⁴ -78 °C⁹⁵). Unfortunately, the fully elaborated C-ring aldehyde⁹⁶ **59** proved to be completely unreactive toward the B-ring sulfonylanion,⁹⁷ and only the undesired ring-opened product was obtained after prolonged reaction times (eq 12).

These exploratory results indicated that the steric congestion at C_{17} was the dominant issue surrounding the $C_{16}-C_{17}$ olefination; accordingly, we explored the use of the less sterically crowded C₁₉-C₂₀ glycal **39a** (Scheme 10). Deprotonation of the sulfone 39a with *n*-butyllithium was followed by addition of 1 equiv of aldehyde 26 to afford the hydroxysulfones as a mixture of four diastereomers.98 Acetylation of the unpurified mixture (Ac₂O/DMAP) and purification by flash chromatography afforded the acetoxysulfones in 87% yield for the two steps. Acetoxysulfone elimination was most conveniently carried out according to the method of Pak,99 which entailed forming a magnesium amalgam in situ with catalytic amounts of mercuric chloride. Under these conditions, the diastereometrically pure (E) olefin 60 (¹H NMR, J = 16 Hz) was obtained in 74% yield (64% overall yield for the Julia olefination).

Based on these experiments, methods for forming both the C_9-C_{10} and $C_{16}-C_{17}$ bond were in hand; however, the

(93) Sulfone **57** was synthesized from alcohol **24** in five steps and 76% overall yield: (i) TBSOTf, 2,6-lutidine, -78 °C; (ii) H₂, 10% Pd/C; (iii) Tf₂O, 2,6-lutidine, -10 °C; (iv) LiSIm, THF, 0 °C; (v) *m*-CPBA. See the Supporting Information for details.

(94) For the use of LiBr with enolates, see: Seebach, D. Angew. Chem., Int. Ed. Engl. 1988, 27, 1624.

(95) The sulfone anion decomposed slowly at -78 °C, producing about 10% of ring-opened elimination product in 1 h. For comparison, the lithium anion of a related phenyl sulfone anion *instantly* produced the undesired open-chain product, cf.: Barnes, N. J.; Davidson, A. H.; Hughes, L. R.; Procter, G. *J. Chem. Soc., Chem. Commun.* **1985**, 1292-1294.

(96) Aldehyde **59** was made from the C_{17} -ODMB analogue of ester **51** in three steps: (i) Ac₂O, DMAP; (ii) DDQ, H₂O/CH₂Cl₂, 5 °C; (iii) Dess–Martin oxidation.

(97) The hindered aldehyde **59** was unreactive toward a number of standard enolate nucleophiles but could be engaged with unhindered silyl enol ethers under Lewis acid catalysis. For the reaction of a similar C-ring aldehyde with an allylboronate, cf.: Wender, P. A.; DeBrabander, J.; Harran, P.; Jimenez, J.-M.; Koehler, M.; Lippa, B.; Park, C.-M. J. Am. Chem. Soc. **1998**, *120*, 4534–4535.

(98) To obtain complete conversion, the addition step needed to be carried out at -50 °C.

(99) Lee, G. H.; Lee, H. K.; Choi, E. B.; Kim, B. T.; Pak, C. S. Tetrahedron Lett. 1995, 36, 5607-5610.

⁽⁸³⁾ The cyclopropane was isolated in 77% yield when the coupling was carried out in the absence of HMPA.

⁽⁸⁴⁾ The *tert*-butyl amide could not be hydrolyzed in the presence of the C_9 ketal. For a discussion of amide hydrolysis, cf. ref 37.

⁽⁹²⁾ For the use of both ylide and nitronate anions generated β to a THP oxygen, cf.: (a) McWhorter, W. W., Jr. Ph.D. Thesis, Harvard University, 1984. (b) Secrist, J. A., III; Wu, S.-R. J. Org. Chem. **1977**, 42, 4084–4088. (c) Kobertz, W. R.; Bertozzi, C. R.; Bednarski, M. D. J. Org. Chem. **1996**, 61, 1894–1897. (d) Martin, O. R.; Lai, W. J. Org. Chem. **1990**, 55, 5188.

Scheme 10^a

^{*a*} Key: (a) (i) n-BuLi, THF, -78 °C, then **26**, $-78 \rightarrow -50$ °C; (ii) Ac₂O, DMAP, CH₂Cl₂; (b) Mg, 20 mol % HgCl₂, EtOH; (c) TBAF, THF, -15 °C; (d) Tf₂O, 2,6-lutidine, CH₂Cl₂, -10 °C; (e) **8a**, 2 equiv of n-BuLi, THF, -78 °C, then HMPA, then **61**, -78 °C; (f) TESCl, imidazole, MeCN; (g) Boc₂O, DMAP, MeCN; (h) BnOLi, 1:1 THF/DMF, -30 °C; (i) (i) m-CPBA, MeOH, -20 °C, (ii) ClCH₂CO₂H, MeOH, 0 °C, (iii) Dess–Martin periodinane, pyr, CH₂Cl₂; (j) HF·pyr, 4:4:1 THF/MeOH/pyr; (k) TESCl, DMAP, CH₂Cl₂, 10 °C (65% + 15% each of the mono- and tris-silylether); (l) 1,4-cyclohexadiene, 10% Pd/C (50 mol %), EtOAc; (m) 2,4,6-trichlorobenzoyl chloride, i-PrNEt₂, PhH, then DMAP, 1.0 mM PhH.

constraints of each coupling reaction (vide supra) required a slightly less convergent approach to the synthesis of the tricycle (Scheme 1, transform T1*). Following this new plan, we investigated the two logical assemblage strategies (A + B \rightarrow $AB + C \rightarrow ABC$ and $B + C \rightarrow BC + A \rightarrow ABC$) and discovered that the ABC tricycle could be accessed via either pathway. Since the yields for both fragment-coupling processes were higher with the second option $(B + C \rightarrow BC + A \rightarrow$ ABC), we utilized this approach in our synthesis (Scheme 10). Due to the acid lability of the C_{19} - C_{20} glycal, functionalization of the C₁₀ position could only be effected by selective desilylation of 60 under basic conditions (TBAF, THF, -15 °C, 75% yield).¹⁰⁰ Subsequent sulfonylation of the new hydroxyl group with trifluoromethanesulfonic anhydride (2,6-lutidine, -10 °C) delivered the unstable primary triflate **61** (95% yield), which was immediately¹⁰¹ treated with 1.5 equiv of the dilithio anion of sulfonylamide 8a (THF/HMPA, -78 °C) to deliver the ABC lactol 62 in 84-90% yield.¹⁰² As expected on the basis of our earlier model studies, overalkylation of the sulfonylamide dianion Li₂-8a was not detected. Utilizing the illustrated sequence (Scheme 10), the ABC tricycle 62 was assembled in 19 linear steps (14% overall yield) from commercially available starting materials (toluenesulfonyl chloride and 2,2-dimethyl-1,3-propanediol) on a multigram scale.

Macrocyclization

The C₉ lactol 62 (Scheme 10) was protected through a selective¹⁰³ methanolysis (PPTS, MeOH/(MeO)₃CH, $62 \rightarrow 63$). In accord with earlier results on the AB bicyclic systems, we found that the N-aryl amide 63 was reverted to the starting lactol after purification ($t_{0.5} \approx 2$ h when neat). Although the exact origin of this lability is unclear at the present time, the stability of its N-benzyl analogue, the N-Boc-N-phenyl derivative 64, and benzyl ester 68 all suggest that the C₉ ketal of 63 may be compromised by the acidity of the anilide N-H proton (p $K_a \approx$ 21.5, DMSO).¹⁰⁴ Attempts to circumvent this problem by making recourse to thioketalization or lactol acetylation were unsuccessful, and initial attempts to advance the N-Boc derivative 64 were compromised by the poor electrophilicity and base sensitivity of the Boc-anilide and the acid lability of the C₁₉-C₂₀ glycal. After some experimentation, it was discovered that the Boc-anilide was much more reactive when the A-ring was locked in its open-chain form and that the sensitivity of the C-ring glycal was eliminated upon oxidation. These observations led to the development of the successful route to the seco acid 69. Functionalization of the A-ring began with silvlation of the open-chain hydroxyketone as its C5-OTES ether 65. When trapped in this protected and extended tautomer, the C1 anilide was now readily transesterified to the benzyl ester 66 (Boc₂O, then LiOBn).¹⁰⁵ It is noteworthy that the use of DMF¹⁰⁶ and low temperature (-30 °C) was critical to the success of the

⁽¹⁰⁰⁾ The temperature control of this reaction was critical to its success, as the lability of the secondary C_{13} -OTBS was quite similar to that of the primary C_{10} -OTBS. Less than 30% of the primary alcohol was isolated under a variety of acidic desilylation conditions.

⁽¹⁰¹⁾ The triflate **61** decomposed rapidly (\leq 10 min) when left in neat form. See the Supporting Information for the details of the purification of **61**.

⁽¹⁰²⁾ In practice, the lactol **62** was obtained in 60-75% yield after chromatography. An additional 15-20% was isolated as the hydroxyketone tautomer, which was silylated (vide infra) to reconverge the material. See the Supporting Information for details.

⁽¹⁰³⁾ Our earlier results with acidic methanolysis of the A and C ring enol ethers showed that the equilibrium lay on the side of either the ketal (A ring) or the enol ether (C ring), depending on the position (exo or endo) and steric environment of the enol ether.

⁽¹⁰⁴⁾ For the pKa of N-phenyl acetamide, cf.: Bordwell, F. G. Acc. Chem. Res. **1988**, 21, 456–463.

⁽¹⁰⁵⁾ Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737–1739.

Scheme 11^a

^{*a*} Key: (a) 20 mol % PPTS, 2:1 MeOH/(MeO)₃CH, CH₂Cl₂, -30 °C; (b) Dess-Martin periodinane, pyr, CH₂Cl₂; (c) **35a**, NaHMDS, THF, -78 °C, then **71**, -15 °C; (d) KHMDS, THF, -78 °C, then OHCCO₂Me, -78 °C; (e) Et₃NSO₂NCO₂Me, PhH; (f) **74**, BH₃·SMe, CH₂Cl₂, then MeOH, then MAc₂O, pyr, DMAP; (g) (i) PPTS, 3:1 THF/H₂O, (ii) Na₂CO₃, MeOH, (iii) pTsOH, 4:1 MeCN/H₂O.

latter reaction $(65 \rightarrow 66)$ and resulted in a dramatic suppression of the base-induced¹⁰⁷ elimination of the C₃-OTBS group. In contrast to the oxidation of glycal 39, oxidation of the C_{19} -C₂₀ glycal (m-CPBA/MeOH, then Dess-Martin oxidation) delivered a 1:1 mixture of stereoisomers at C₁₉, along with unexpected substitution products (C19OH and/or C19O2CAr). Incorporation of a thermodynamically controlled methanolysis step (MeOH, ClCH₂CO₂H, 0 °C) into the double oxidation sequence erased the effects of the unwanted substitution and corrected the stereochemical deficiencies of the process, delivering the oxoketal 67 as a single diastereomer in 79% overall vield.¹⁰⁸ Complete desilvlation and concomitant cyclization of the A-ring was readily effected under buffered conditions (HF-Pyr, THF/MeOH/pyridine, 3 days) to afford the triol 68 in good yield.¹⁰⁹ Initial macrocyclization attempts focused on the carboxylic acid derivative of **68** (R, R' = H); however, these studies were frustrated by the unexpected reactivity of the C₃ hydroxyl group, and only low-yielding cyclization reactions could be obtained.¹¹⁰ These problems were circumvented via selective protection of the C₃ hydroxyl in the presence of the C25 hydroxyl (TESCl, DMAP; 65% yield; 82% yield, based on recovered starting material). Subsequent selective debenzylation (cyclohexadiene, 10% Pd/C)¹¹¹ afforded the hydroxyacid **69**, which was smoothly cyclized under modified Yamaguchi conditions¹¹² to afford macrocycle **70** in 81% yield (Scheme 10).

Synthesis of Bryostatin 2

With the macrocyclization accomplished, we addressed the late-stage installation of the enoate moieties. Selective removal of the C_{13} -OTES group of 70 afforded the C_{13} alcohol, which was readily oxidized to the diketone 71 using the Dess-Martin procedure (Scheme 11).⁷¹ Condensation of the C₁₃,C₂₀ diketone 71 with 4 equiv of the sodium anion of trimethyl phosphonoacetate (THF, 23 °C) selectively¹¹³ derivatized the C₁₃ ketone to produce the C_{13} - C_{30} enoate 72 in 100% yield and 64:36 Z:E diastereoselectivity. Following the precedent previously established in simple B-ring systems (eq 5), the use of the sodium anion of Fuji's chiral phosphonate 35a provided an 85:15 mixture of diastereomers in 93% combined yield (75% isolated yield of 72¹¹⁴ after preparative TLC). Subsequent incorporation of the C-ring enoate was best accomplished using a two-step procedure (KHMDS, OHCCO₂Me; then Burgess reagent).¹¹⁵ The ability of KHMDS to selectively enolize the C₂₀ ketone in the presence of the C_1 ester is precedented¹¹⁶ and is apparently

⁽¹⁰⁶⁾ Jacobi has observed that DMF improves the ratio of exocyclic to endocyclic cleavage in the LiOOH-mediated hydrolysis of *N*-acyloxazolidinones, cf.: Jacobi, P. A.; Murphee, S.; Rupprecht, F.; Zheng, W. *J. Org. Chem.* **1996**, *61*, 2413–2427.

⁽¹⁰⁷⁾ Interestingly, the less basic magnesio species (MgOBn, BnOH) also inhibited the elimination reaction but resulted in the wrong cleavage regioselectivity (the anilide **65** was the major product).

⁽¹⁰⁸⁾ Only the final product **67** was purified via flash chromatography. (109) For another use of HF·Pyr/MeOH with a mixed methyl ketal, cf.: Nicolaou, K. C.; Daines, R. A.; Ogawa, Y.; Chakraborty, T. K. *J. Am. Chem. Soc.* **1988**, *110*, 4696–4705.

⁽¹¹⁰⁾ The best result obtained with the carboxylic acid derivative of **68** (R = R' = H) utilized the thiopyridyl ester (cf. Corey, E. J.; Nicolaou, K. C. *J. Am. Chem. Soc.* **1974**, *96*, 5614–5616) and provided the macrocycle in 14% yield for the two steps (thioester formation and cyclization).

⁽¹¹¹⁾ Felix, A. M.; Heimer, E. P.; Lambros, T. J.; Tzougraki, C.; Meienhofer, J. J. Org. Chem. 1978, 43, 4194-4196.

^{(112) (}a) Evans, D. A.; Kim, A. S. J. Am. Chem. Soc. **1996**, 118, 11323–11324. (b) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chim. Soc. Jpn. **1979**, 52, 1989–1993.

⁽¹¹³⁾ The C_{20} ketone is both sterically crowded and electronically deactivated. Model studies with the C-ring intermediate **49** showed that this ketone failed to react with the sodium anion of trimethylphosphonoacetate, even over the course of several days.

⁽¹¹⁴⁾ The olefin geometry of **73** was readily elucidated using ¹H NMR (COSY-90, 500 MHz, C₃D₆O): C₁₄H_{eq} (δ 3.81) was significantly downfield of C₁₂H_{eq} (δ 2.37) in the ¹H NMR spectrum of the Z diastereomer, and C₁₂H_{eq} (δ 3.96) was significantly downfield of C₁₄H_{eq} (δ 2.10) in the *E* diastereomer. In addition, the C₃₀H resonance exhibited a strong enhancement to the C₁₂H_{eq} resonance in the NOESY spectrum of **73**.

^{(115) (}a) Burgess, E. M.; Penton, H. R., Jr.; Taylor, E. A. J. Org. Chem. **1973**, 38, 26–31. (b) The Burgess elimination needed to be carried out at low temperatures and worked up under basic conditions, in contrast to the literature reports. The acceleration in this reaction is probably attributable to the acidifying properties of the C_{20} ketone.

 ^{(116) (}a) Ireland, R. E.; Gleason, J. L.; Gegnas, L. D.; Highsmith, T. K.
 J. Org. Chem. 1996, 61, 6856–6872. (b) Ireland, R. E.; Wipf, P.; Armstrong,
 J. D., III. J. Org. Chem. 1991, 56, 650–657.

favored in the present system by the conformation of macrolactone $\mathbf{73}^{.117}$

The reduction of ketone 73 proved quite troublesome, in contrast to the analogous reaction with simple C-ring systems (cf. $50 \rightarrow 51$, Scheme 9). Reduction of 73 under standard Luche conditions (NaBH₄, CeCl₃) resulted in the formation of product **76** (30% yield, 65:35 diastereoselection), in which the C_{19} ketal had been hydrolyzed. This reaction was not favorably influenced by changes in the reaction temperature, time, or workup, and all attempts to convert 76 into the deprotected 77 were ineffective due to the unexpected¹¹⁸ stability of the C₉ ketal. It was reasoned that the C₁₉ lactol must be the source of this unusual stability at C₉; accordingly, the in situ acylation of the nascent hydroxyl C20 was explored. In the event, reduction of 73 with NaBH₄ (10:1 THF/MeOH, -15 °C), followed by anhydrous quenching of the reaction mixture with isobutyraldehyde and addition of excess methoxyacetic anhydride (pyridine, DMAP), afforded compound 75 (ca. 50% yield, 60:40 diastereoselection, 25% isolated yield of 75), in which the C₁₉ ketal had been maintained. Fortunately, the stereoselectivity of the reduction step could be improved by employing the CBS reagent¹¹⁹ 74, which delivered the desired 75 in excellent yield and selectivity¹²⁰ (>90% yield, 10:1 diastereoselection, 70% isolated 75). Methoxyacetate 75 was then transformed to 77 via the three-step sequence: (i) desilvlation and hydrolysis of C₉ (PPTS, aqueous THF); (ii) saponification of the methoxyacetate protecting group (Na₂CO₃, MeOH); and (iii) hydrolysis of C_{19} and equilibration of C_9 (*p*-TsOH, aqueous MeCN). Not surprisingly, tetraol 77 existed in a solution conformation identical to that of bryostatin 10 (1e) according to highresolution ¹H NMR analysis.¹²¹

With compound **77** in hand, we focused our attention on the synthesis of the C_{20} -oxygenated series of bryostatins. Use of anhydride chemistry (symmetric or Yamaguchi anhydride,

(117) Subjection of open-chain precursors of 70 to KHMDS conditions resulted in instantaneous elimination of the C₃-OTES group.

(118) The acid lability of the C_9 ketal had been a liability throughout the course of the synthesis, and all compounds (except **76**) that contained this group had to be handled carefully in order to avoid spurious hydrolysis.

(119) (a) Corey, E. J.; Bakshi, R. K.; Shibata, S.; Chen, C.-P.; Singh, V. K. J. Am. Chem. Soc. **1987**, 109, 7925–7926. (b) For a review, cf.: Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. **1998**, 37, 1986–2012. (c) Interestingly, the use of the B-Me catalyst was found to be superior to the B-Bu catalyst, presumably due to the large degree of steric crowding experienced in the transition state for the reduction. In addition, borane methyl sulfide was the only suitable hydride source for the reaction.

(120) (a) The CBS reagent **74** was uniquely capable of delivering a highyielding, stereoselective reaction; all other chiral and achiral reducing agents either delivered the wrong diastereomer or delivered the desired product in low yields. (b) The stereochemical assignment was based on three factors: (i) analogy to the reactions of a system lacking the B-ring enoate (cf. ref 1), in which the stereochemistry of both product C_{20} diastereomers was determined by NMR; (ii) NOESY analysis of **77**, which showed a crosspeak between C_{20} H and C_{34} H.; and (iii) the synthesis of **1b** and **1c** (vide infra).

(121) (a) With the hydroxyl groups at C₃, C₉, and C₁₉ deprotected, tetraol 77 is capable of forming the bryostatin hydrogen bonding network (cf. Figure 2). Indeed, analysis of the NOESY spectrum of 77 (500 MHz, benzene- d_6) reveals an identical set of enhancements to that seen in the ROESY spectrum of bryostatin 10 (cf. ref 13). Additional confirmation for the establishment of the hydrogen bonding network comes from the chemical shift data for the hydroxyl protons: the C₁₉ lactol (δ 5.48) and C₃ hydroxyl (δ 4.39) protons are significantly deshielded relative to their C₉ (δ 1.86) and C₂₀ (δ 1.32) counterparts. Finally, the IR spectrum of 77 shows two distinct, sharp bands for O-H stretching (3465 and 3363 cm⁻¹). (b) It should be noted that compound 77 is the first in the series of synthetic intermediates to adopt the "natural" conformation depicted in Figure 2. A first-order investigation of the solution structures of earlier intermediates has indicated that it is the nature of the C₁₉ ketal, and not the C₃ hydroxyl group, that dictates the preferred solution conformation of the molecule. For a more detailed discussion, see: Carter, P. H. Ph.D. Thesis, Harvard University, 1998

 a Key: (a) (*E,E*)-2,4-octadienoic acid, DIC, DMAP, CH₂Cl₂; (b) DDQ, 10:1 CH₂Cl₂/pH 7 buffer.

DMAP) for the monoacylation of 77 resulted in bisacylation to form **78** ($\mathbf{R'} = \mathbf{Me}$ or $\mathbf{C}_{7}\mathbf{H}_{11}$) (Scheme 12). This problem was effectively circumvented by using carbodiimide activation: exposure of 77 to octadienoic acid, DIC, and DMAP (CH₂Cl₂, 23 °C) provided a 62% yield of the monoacylated 79. Oxidative deprotection of the two *p*-methoxybenzyl ethers at C₇ and C₂₆ was best effected (57% yield) under buffered conditions (DDQ, pH 7 phosphate buffer, CH₂Cl₂) in order to avoid problems with the sensitive octadienoate side chain. The bryostatin 2 (1b) thus obtained was identical to a natural sample by several criteria: 500-MHz ¹H NMR (CDCl₃ or C₆D₆, including COSY-90), TLC R_{f} , HPLC retention time (including co-injection), and EI mass spectroscopy. The conversion of bryostatin 2 (1b) into bryostatin 1 (1a) via selective silvlation of the C₂₆ hydroxyl group has been previously described by Pettit,⁸ and we have exploited analogous chemistry to convert the C₂₀ acetate analogue of 79 into bryostatin 6 (1c).122

Conclusion

The total synthesis of bryostatin 2, a biologically potent marine macrolide, has been accomplished. The synthesis proceeds over 40 steps (longest linear sequence) and entails the convergent coupling of the three intact tetrahydropyran rings, followed by macrocyclization and late-stage installation of the two enoate functional groups. The absolute stereochemistry of each fragment was established using three distinct methods: an oxazolidinone-mediated aldol reaction, a copper-catalyzed enol-silane addition, and a catalytic epoxidation with kinetic resolution. The remaining hydroxyl stereocenters were established by internal relay, with the exception of the C₂₀ stereocenter, which was set via an oxazaborolidine-based reduction. The synthesis plan is flexible in the late stages and is thus well suited for analogue development, a task which has the potential to shed new light on the complex biological profile of the bryostatins.¹²³

Acknowledgment. Support has been provided by the National Institutes of Health. We thank Dr. Andrew Tyler of

⁽¹²²⁾ Intermediate **77** was converted into bryostatin 6 (**1c**) in 27% overall yield via the following five-step sequence: (i) Ac₂O, pyr; (ii) DDQ, 20:1 CH₂Cl₂:H₂O; (iii) TESCl, DMAP; (iv) (*n*-PrCO)₂O, pyr; (v) HF/MeCN/H₂O, 0 °C. The material exhibited spectral characteristics (exact mass FAB-MS, 500-MHz ¹H NMR) completely consistent with those reported by Pettit et al.: Pettit, G. R.; Kamano, Y.; Herald, C. L.; Tozawa, M. *Can. J. Chem.* **1985**, *63*, 1204–1208.

⁽¹²³⁾ For a completely different approach to analogue development, cf. the work of Wender et al.: (a) Wender, P. A.; DeBrabander, J.; Harran, P.; Jimenez, J.-M.; Koehler, M.; Lippa, B.; Park, C.-M. *J. Am. Chem. Soc.* **1998**, *120*, 4534–4535. (b) Wender, P. A.; DeBrabander, J.; Harran, P. G.; Jimenez, J.-M.; Koehler, M. F. T.; Lippa, B.; Park, C.-M.; Siedenbiedel, C.; Pettit, G. R. *Proc. Natl. Acad. Sci. U.S.A.* **1998**, *95*, 6624–6629.

the Harvard Mass Spectrometry Facility for providing mass spectra; Prof. G. R. Pettit for providing an authentic sample of bryostatin 2 and spectral data for bryostatin 6; and the NIH BRS Shared Instrumentation Grant Program 1-S10-RR04870 and the NSF (CHE 88-14019) for providing NMR facilities. Fellowship support from the NSF (P.H.C., E.M.C.), NSERC (A.B.C., M.L.), Boehringer-Ingelheim (P.H.C.), and Hoffmann LaRoche (P.H.C.) is also gratefully acknowledged. **Supporting Information Available:** Experimental details and analytical data regarding the preparation of all synthetic intermediates, and comparison spectra of natural and synthetic bryostatin 2 (**1b**) (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA990860J